

LIMITATORE DI COPPIA MODULARE

FINO A 120.000 Nm DI COPPIA E 260 mm DI ALESAGGIO

- Download catalogo
- Download istruzioni di montaggio
- Download modelli CAD 3D e 2D

DSM - limitatore di coppia modulare (rotazione libera): introduzione

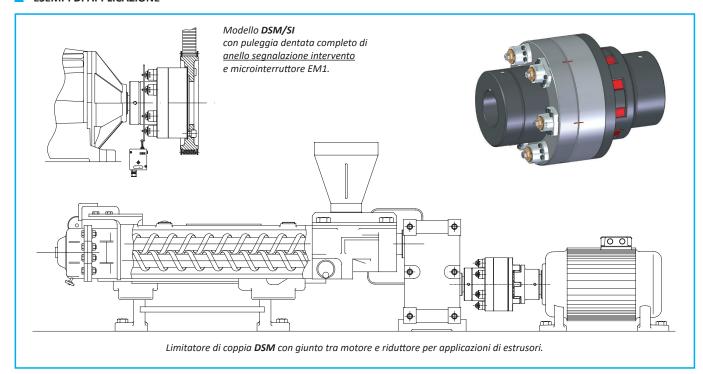
- Realizzato completamente in acciaio, con particolari ad alta resistenza meccanica.
- O Rotazione libera dopo il disinnesto senza coppia residua.
- O Assenza di manutenzione per un elevata affidabilità nel tempo.
- o Protetto da agenti esterni.
- O Idoneo per elevate velocità di rotazione ed elevate inerzie.
- O Semplice sistema di registrazione e reinnesto.
- Struttura compatta e robusta

A RICHIESTA

- Anello segnalazione dell'intervento (.../SI).
- O Possibilità di connessioni con foro finito e cava o con calettatore.
- Soluzioni personalizzate per specifiche applicazioni.
- Possibilità di trattamenti superficiali anticorrosivi per specifiche esigenze.

Giunto di sicurezza robusto e modulare con <u>rotazione libera</u> senza coppia residua dopo il disinnesto; <u>idoneo per elevate velocità</u> con coppie sostenute e grossi diametri dell'albero. Coppia regolabile modificando la pressione delle molle di ogni singolo modulo. Il reinnesto è manuale, semplice e veloce.

PRINCIPALI APPLICAZIONI

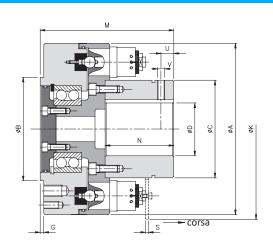

- Estrusori e Laminatoi.
- Industria mineraria e trasportatori.
- Heavy industry.
- Macchine movimento terra, trituratori e macchine per la frantumazione.

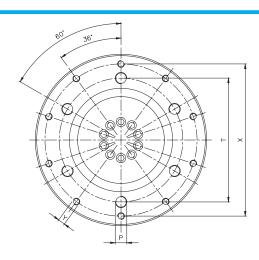
VANTAGGI E BENEFICI

- Protezione del prodotto in caso di accumulo.
- O Protezione delle unità operatrici di macchine in caso di collisione.
- Protezione della motorizzazione da accidentali sovraccarichi esterni.
- Protezione di un nastro trasportatore da inceppamenti.

DSM: modello base per trasmissione del moto ad alberi paralleli con corone, ingranaggi o pulegge.	Da 200 a 9.500 Nm di coppia 140 mm di alesaggio max	Pag. 47
+ GAS: collegamento coassiale con giunto elastico per ammortizzare coppie di spunto e vibrazioni.	Da 200 a 7000 Nm di coppia 140 mm di alesaggio max	Pag. 48
+ GTR: collegamento coassiale con giunto torsionalmente rigido a lamelle per una trasmissione priva di giochi torsionali.	Da 200 a 9.500 Nm di coppia 140 mm di alesaggio max	Pag. 48

ESEMPI DI APPLICAZIONE



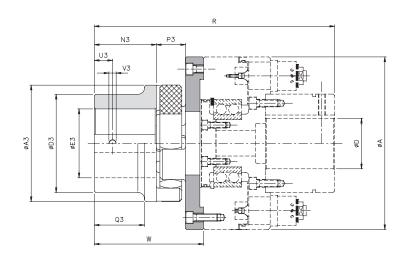

DSM - limitatore di coppia modulare (rotazione libera): dati tecnici

- Staticamente bilanciato con moduli disposti simmetricamente.
- Torsionalmente rigido.
- O Sostituzione dei moduli senza rimuovere il dispositivo o altri componenti della trasmissione.
- Separazione completa tra parte condotta e parte motrice dopo il disinnesto.
- O Cuscinetti integrati per il supporto dell'organo di trasmissione.
- O Coppia max fino a 120.00 Nm e foro Max fino a ø 260 mm.

DIMENSIONI

	Grandezza	۸	B h7		D H7	G	М	N	D	т	- 11	V	х	v	A richiesta	
	Granuezza	А			max			.,	·	•				'	K	S
	0	237	140	135	90	5	190	95	6xM16	170	18	M10	210	10xM10	250	4
	1	270	175	165	110	5	220	110	6xM18	205	25	M12	245	10xM12	300	5
•	2	350	220	215	140	5	300	145	6xM20	260	35	M16	310	10xM14	380	6
•		650	-	-	260	-	485	-	-	-	-	-	-	-	-	-

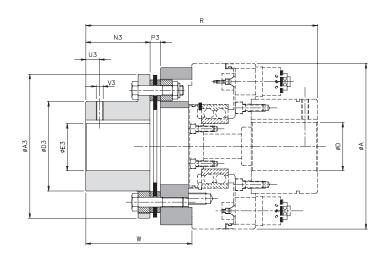
CARATTERISTICHE TECNICHE


Grandezza		Coppia [Nm]		Corsa	Inerzia	G [Kgm²]	Velocità max	Peso
Granuezza	3 MD	6 MD	9 MD	disinnesto [mm]	Lato flangia	Lato mozzo	[Rpm]	[Kg]
0	200 - 1200	400 - 2400	-	4	0,136228	0,103605	3000	42
1	325 - 1400	650 - 2800	975 - 4200	4	0,284825	0,193814	3000	55
2	1250 - 3300	2200 - 6200	3300 - 9500	5,5	1,128794	0,807608	3000	85
	F	ino a 120.000 Nm	1	-	-	-	-	-

■ NOTE ▲ A richiesta

 \bullet I pesi e le inerzie si riferiscono al limitatore di coppia foro max con 6 moduli.

• Per microinterruttore EM1 e sensore induttivo PRX vedere pag. 69


DIMENSIONI E CARATTERISTICHE TECNICHE

	Grandezza Coppia [Nm]		ia [Nm]			E3 H7							D H7			Dis	allineame	nti	M-111	D		
	DSM	GAS std	GAS	Nom	Max	A3	D3	max	N3	Р3	Q3	U3	V3	А	max	R	W	Angolare α [°]	Assiale X [mm]	Radiale K [mm]	Velocità [Rpm]	Peso [Kg]
ĺ	0	7	8	1465	2930	160	135	95	85	40	69	25	M10	237	90	335	150	1° 18′	2,5	0,48	3000	10
	1	8	10	3600	7200	200	160	110	100	45	81	30	M12	270	110	385	170	1° 18′	2,8	0,50	3000	15
▲ [2	10	-	7000	14000	255	185	130	120	55	96	30	M12	350	140	500	205	1° 18′	3,2	0,55	3000	46

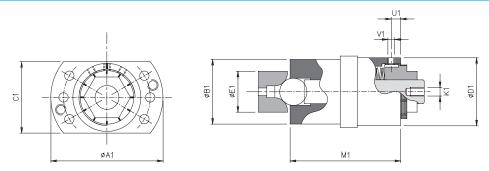
A richiesta

... + GTR - modello con giunto torsionalmente rigido: dati tecnici

DIMENSIONI E CARATTERISTICHE TECNICHE

G	Grandezza Coppia [Coppia [Nm]			E3 H7						. D H7			D	isallineamen	iti	Volosità	Peso	
DS	SM	GTR	Nom	Max	A3	D3	max	N3	P3	U3	V3	3 A	max	R	W	Angolare α[°]	Assiale X [mm]	Radiale K [mm]	Velocità [Rpm]	[Kg]
(0	7	2600	5200	206	128	90	92	15	20	M10	237	90	337	152	0° 45′	2,2	-	3000	18
	1	8	4000	8000	226	133	95	100	22	20	M10	270	110	390	175	0° 45′	2,4	-	3000	29
\ <u> </u>	2	10	10000	20000	296	170	120	120	32	25	M12	350	140	535	240	0° 45′	2,6	-	3000	51

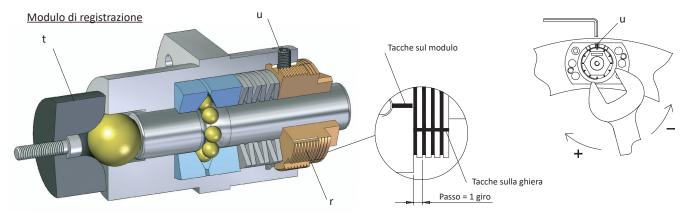
- ... + GAS: i dati dei disallineamenti sono riferiti alla stella normale rossa 98 Shore-A (95 Shore-A per la grandezza 10).
- I dati riportati sono riferiti alla sola applicazione (GAS, GTR), per i dati del limitatore vedi pagina 47.


- I pesi si riferiscono alla sola applicazione (GAS, GTR) foro max.
- Per microinterruttore EM1 e sensore induttivo PRX vedere pag.69

MD - modulo di registrazione: dati tecnici

Realizzato completamente in acciaio ad alta resistenza meccanica.

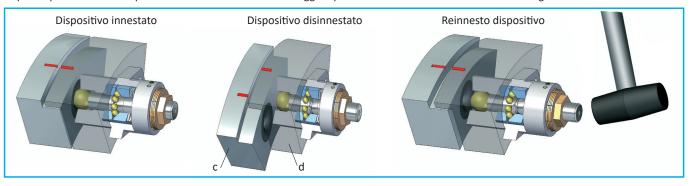
- Semplicità di registrazione.
- Facilità di reinnesto manuale.
- Montato su dispositivi DSM per una trasmissione torsionalmente rigida.
- O Disinnesto con distacco completo tra parte motrice e parte condotta.
- Disponibile in due grandezze.


DIMENSIONI

Gran	dezza	A 1	B1 h7	C1	D1	E1 h7	K1	M1	U1	V1
DSM	MD	A1	D1 117	CI	DI	E111/	KI	IVII	01	VI
0	2	cc	20	42	40	24	M5	65	5,5	2
1		66	38							3xM4
2	3	87	50	56	54	30	M8	95	5,5	3xM4

TARATURA

Elementi fondamentali del gruppo DSM sono i moduli di registrazione della coppia dove un perno centrale (p) spinge una sfera (s) contro la propria sede (t) generando così la coppia di trasmissione tra la parte motrice e quella condotta.


La regolazione della coppia di intervento può essere eseguita anche a dispositivo montato registrando la ghiera esagonale (r) dei singoli moduli. Accertarsi che durante questa fase il grano di fissaggio (u) sia svitato. Per l'aiuto della registrazione sulla circonferenza del corpo centrale del modulo è presente 1 tacca di riferimento, mentre sulla ghiera sono presenti diverse tacche, sia radiali che assiali e una tacca marcata con "O". Inoltre su tutta la circonferenza esterna della ghiera sono incise altre tacche che corrispondono al passo della ghiera stessa. Salvo diversa indicazione il gruppo viene fornito al minimo della coppia di trasmissione. Ruotando la ghiera in senso orario si ha un incrementro della coppia finale. Conclusa l'operazione di calibrazione è necessario bloccare la ghiera avvitando il grano (u).

REINNESTO

Il reinnesto del limitatore è manuale e deve essere eseguito solo con il dispositivo a riposo.

Ruotare la base fissa (c) oppure la base mobile (d) affinché le due tacche di rifermento marcate su questi particolari coincidano. A questo punto innestare i perni dei relativi moduli con una leggera pressione mediante utensile o martello di gomma.

DSM - limitatore di coppia modulare : approfondimento

FUNZIONAMENTO

Questo modello di limitatore DSM a rotazione libera è stato specificatamente progettato per proteggere da sovraccarichi macchine per l'industria pesante con potenze ed inerzie significative ed elevate velocità di rotazione.

Le guarnizioni presenti lo proteggono da polvere, sporco e prevengono la fuoriuscita del grasso utilizzato al suo interno.

In condizioni di funzionamento nominale la coppia di trasmissione viene trasferita dalla parte motrice a quella condotta mediante un diverso numero di moduli assemblati simmetricamente su una circonferenza esterna del dispositivo con possibilità di diverse configurazioni di molle al loro interno.

In caso di sovraccarico, quando la coppia richiesta dalla parte condotta eccede quella di calibrazione, si ha l'uscita delle sfere di trascinamento dalla propria sede generando uno spostamento assiale dei perni centrali all'interno dei moduli. Questo disinnesto avviene istantaneamente separando la parte condotta da quella motrice che però potrà continuare a ruotare in regime di rotazione libera fino all'arresto della trasmissione.

Il dispositivo può anche essere dotato di un anello d'intervento (DSM/SI), collegato ai perni centrali dei vari moduli, per poter "leggere", attraverso un microinterruttore elettromeccanico (modello ComInTec: EM1) oppure un sensore induttivo (modello ComInTec: PRX), lo spostamento assiale ed inviare un segnale elettrico per attivare una segnalazione di allarme ed arrestare la trasmissione.

Il reinnesto dei singoli moduli dovrà avvenire a macchina ferma seguendo quanto descritto nella sezione ad essa dedicata.

MODO D'USO E MONTAGGIO

Il dispositivo viene fornito con foro finito sul mozzo realizzato, salvo diversa specifica, con tolleranza H7 e cava per linguetta secondo DIN6885-1 con tolleranza H9.

Il fissaggio del dispositivo può essere effettuato assialmente mediante grano sulla cava oppure possono essere utilizzati, a richiesta, calettatori interni.

Il dispositivo NON è auto-portante quindi è necessario prevedere che gli alberi su cui verrà montato siano supportati con cuscinetti e nel caso di applicazione con giunto vengano rispettati i disallineamenti riportati a catalogo.

MANUTENZIONE

Questi dispositivi, meccanici, risultano esenti da manutenzione.

Nel caso dei limitatori di coppia è opportuno tener conto di diverse variabili che combinate tra loro possono influire sulla durata del limitatore stesso:

- Valore di coppia d'intervento in relazione al range previsto dal limitatore.
- Eventuale frequenza e durata degli interventi.
- O Possibilità di dissipare il calore generato dagli slittamenti o disinnesti.
- Velocità di rotazione.
- Condizioni ambientali di lavoro.

ESEMPIO DI ORDINAZIONE

